4 research outputs found

    Asynchronous Training of Word Embeddings for Large Text Corpora

    Full text link
    Word embeddings are a powerful approach for analyzing language and have been widely popular in numerous tasks in information retrieval and text mining. Training embeddings over huge corpora is computationally expensive because the input is typically sequentially processed and parameters are synchronously updated. Distributed architectures for asynchronous training that have been proposed either focus on scaling vocabulary sizes and dimensionality or suffer from expensive synchronization latencies. In this paper, we propose a scalable approach to train word embeddings by partitioning the input space instead in order to scale to massive text corpora while not sacrificing the performance of the embeddings. Our training procedure does not involve any parameter synchronization except a final sub-model merge phase that typically executes in a few minutes. Our distributed training scales seamlessly to large corpus sizes and we get comparable and sometimes even up to 45% performance improvement in a variety of NLP benchmarks using models trained by our distributed procedure which requires 1/101/10 of the time taken by the baseline approach. Finally we also show that we are robust to missing words in sub-models and are able to effectively reconstruct word representations.Comment: This paper contains 9 pages and has been accepted in the WSDM201

    "Picture the scene...";

    No full text
    Due to the advent of social media and web 2.0, we are faced with a deluge of information; recently, research efforts have focused on filtering out noisy, irrelevant information items from social media streams and in particular have attempted to automatically identify and summarise events. However, due to the heterogeneous nature of such social media streams, these efforts have not reached fruition. In this paper, we investigate how images can be used as a source for summarising events. Existing approaches have considered only textual summaries which are often poorly written, in a different language and slow to digest. Alternatively, images are "worth 1,000 words" and are able to quickly and easily convey an idea or scene. Since images in social media can also be noisy, irrelevant and repetitive, we propose new techniques for their automatic selection, ranking and presentation. We evaluate our approach on a recently created social media event data set containing 365k tweets and 50 events, for which we extend by collecting 625k related images. By conducting two crowdsourced evaluations, we firstly show how our approach overcomes the problems of automatically collecting relevant and diverse images from noisy microblog data, before highlighting the advantages of multimedia summarisation over text based approaches
    corecore